

Date Planned ://	Daily Tutorial Sheet-15	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

- **159.** The density of an equilibrium mixture of N_2O_4 and NO_2 at latm and 373.5K is 2.0g/L. Calculate K_C for the reaction $N_2O_4(g) \Longrightarrow 2NO_2(g)$.
- **160.** Calculate the equilibrium concentration ratio of C to A if equimolar ratio of A and B were allowed to come to equilibrium at 300 K.

$$A(g) + B(g) \rightleftharpoons C(g) + D(g); \Delta G^{\circ} = -830 \text{ cal.}$$

161. A 250 mL flask, and 100 mL flask are separated by a stop cock. At 350K, the nitric oxide in the larger flask exerts a pressure of 0.46 atm and the smaller one contains oxygen at 0.86atm. The gases are mixed by opening the stop cock. The reactions occurring are

$$2\mathrm{NO} + \mathrm{O}_2 \longrightarrow 2\mathrm{NO}_2 \Longrightarrow \mathrm{N}_2\mathrm{O}_4$$

The first reaction is complete while the second one is at equilibrium. Assuming all the gases to behave ideally, calculate the K_p for the equilibrium reaction if the final total pressure is 0.37atm.

162. Solid NH₄I upon rapid heating in a closed vessel at 357°C develops a constant pressure of 275mm Hg owing to the partial decomposition of NH₄I into NH₃ and HI but the pressure gradually increase further (when excess solid residually remain in the vessel) owing to the dissociation of HI. Calculate the final pressure developed under equilibrium.

$$NH_4I(s) \rightleftharpoons NH_3(g) + HI(g)$$

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g), K_P = 0.015 \text{ at } 357^{\circ}C.$$

- 163. A container whose volume is V, contains an equilibrium mixture that consists of 2 moles each of PCl_5 , PCl_3 and Cl_2 (all gases). The pressure is 30.3975 kPa and temperature is T. A certain amount of $Cl_2(g)$ is now introduced keeping the pressure, and temperature constant until the equilibrium volume changes to 2V. Calculate the amount of Cl_2 that was added and the value of K_p .
- 164. PCl₅ dissociates into PCl₃ and Cl₂ as PCl₅(g) \Longrightarrow PCl₃(g) + Cl₂(g)

 If the total pressure of the system in equilibrium is P at a density ρ and temperature T, show that Degree of dissociation $\alpha = \frac{PM}{\rho RT} 1$ where M is the relative molar mass of PCl₅. If the vapour density of the gas mixture at equilibrium has the value of 62 when the temperature is 230°C, what is the value of P/ ρ ?